Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 192
Filter
1.
Braz. j. med. biol. res ; 57: e13105, 2024. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1528108

ABSTRACT

One of the main challenges of tissue engineering in dentistry is to replace bone and dental tissues with strategies or techniques that simulate physiological tissue repair conditions. This systematic review of in vitro studies aimed to evaluate the influence of the addition of nanohydroxyapatite (NHap) to scaffolds on cell proliferation and osteogenic and odontogenic differentiation of human mesenchymal stem cells. In vitro studies on human stem cells that proliferated and differentiated into odontogenic and osteogenic cells in scaffolds containing NHap were included in this study. Searches in PubMed/MEDLINE, Scopus, Web of Science, OpenGrey, ProQuest, and Cochrane Library electronic databases were performed. The total of 333 articles was found across all databases. After reading and analyzing titles and abstracts, 8 articles were selected for full reading and extraction of qualitative data. Results showed that despite the large variability in scaffold composition, NHap-containing scaffolds promoted high rates of cell proliferation, increased alkaline phosphatase (ALP) activity during short culture periods, and induced differentiation, as evidenced by the high expression of genes involved in osteogenesis and odontogenesis. However, further studies with greater standardization regarding NHap concentration, type of scaffolds, and evaluation period are needed to observe possible interference of these criteria in the action of NHap on the proliferation and differentiation of human stem cells.

2.
Journal of Peking University(Health Sciences) ; (6): 44-51, 2023.
Article in Chinese | WPRIM | ID: wpr-971272

ABSTRACT

OBJECTIVE@#To investigate the preparation of decellularized small intestinal submucosa (dSIS) sponge scaffolds with chelated strontium (Sr) ions at different pH values, and to select the appropriate pH values for synthesizing Sr/dSIS scaffolds using the physicochemical properties and biocompatibility of the scaffolds as evaluation indexes.@*METHODS@#(1) Sr/dSIS scaffolds preparation and grouping: After mixing dSIS solution and strontium chloride solution in equal volumes, adjusting pH of the solution to 3, 5, 7, and 9 respectively, porous scaffolds were prepared by freeze-drying method after full reaction at 37℃, which were named Sr/dSIS-3, -5, -7, and -9 respectively, and the dSIS scaffolds were used as the control group. (2) Physicochemical property evaluation: The bulk morphology of the scaffolds was observed in each group, the microscopic morphology analyzed by scanning electron microscopy, and the porosity and pore size determined, the surface elements analyzed by energy spectroscopy, the structure of functional groups analyzed by infrared spectroscopy, the chelation rate determined by atomic spectrophotometry, the water absorption rate detected by using specific gravity method, and the compression strength evaluated by universal mechanical testing machine.(3) Biocompatibility evaluation: The cytotoxicity and proliferative effect to bone mesenchymal stem cells (BMSCs) of each group were evaluated by Calcein-AM/PI double staining method.@*RESULTS@#Scanning electron microscopy showed that the scaffolds of each group had an interconnected three-dimensional porous structure with no statistical difference in pore size and porosity. Energy spectrum analysis showed that strontium could be detected in Sr/dSIS-5, -7 and -9 groups, and strontium was uniformly distributed in the scaffolds. Functional group analysis further supported the formation of chelates in the Sr/dSIS-5, -7 and -9 groups. Chelation rate analysis showed that the Sr/dSIS-7 group had the highest strontium chelation rate, which was statistically different from the other groups (P < 0.05). The scaffolds in all the groups had good water absorption. The scaffolds in Sr/dSIS-5, -7 and -9 groups showed significantly improved mechanical properties compared with the control group (P < 0.05). The scaffolds in all the groups had good biocompatibility, and the Sr/dSIS-7 group showed the best proliferation of BMSCs.@*CONCLUSION@#When pH was 7, the Sr/dSIS scaffolds showed the highest strontium chelation rate and the best proliferation effect of BMSCs, which was the ideal pH value for the preparation of the Sr/dSIS scaffolds.


Subject(s)
Tissue Scaffolds/chemistry , Biocompatible Materials , Strontium/pharmacology , Ions , Hydrogen-Ion Concentration , Tissue Engineering/methods , Porosity
3.
São José dos Campos; s.n; 2023. 98 p. ilus, tab.
Thesis in Portuguese | LILACS, BBO | ID: biblio-1525651

ABSTRACT

Substitutos de enxerto de tecido conjuntivo têm sido amplamente utilizados para superar as limitações dos enxertos autógenos no tratamento de defeitos dos tecidos moles periodontais e peri-implantares. No entanto, o desempenho clínico desses biomateriais ainda é inferior. A biofuncionalização de matrizes colágenas usando fibrina rica em plaquetas injetável (i-PRF) foi proposta como uma estratégia para aprimorar a bioatividade e, portanto, a eficácia clínica desses substitutos mucosos. Desta forma, o objetivo deste estudo foi avaliar a eficácia do uso da matriz colágena estável em volume (FG) biofuncionalizada com i-PRF no tratamento de recessões gengivais unitárias (RGs) do ponto de vista clínico, estético e de parâmetros centrados no paciente. Para tal, foram selecionados 66 pacientes portadores de RGs unitárias RT1, os quais foram alocados aleatoriamente em um dos seguintes grupos: grupo CAF (n=22), retalho posicionado coronariamente (CAF); grupo CAF+FG (n=22), CAF associado à FG; e grupo CAF+FG+i-PRF (n=22), CAF associado à FG biofuncionalizada com i-PRF. Após 6 meses, os três grupos apresentaram taxas de recobrimento radicular significativas [CAF: 69,1% (2,02 ± 1,06 mm); CAF+FG: 67,44% (1,7 ± 0,81 mm) e CAF+FG+i-PRF: 64,92% (1,64 ± 0,80 mm), sem diferença entre os grupos (p=0,33). Os grupos que receberam os biomateriais forneceram um maior ganho em espessura de tecido queratinizado (ETQ) (CAF: 0,12 ± 0,2 mm; CAF+FG: 0,43 ± 0,24 mm; CAF+FG+i-PRF: 0,48 ± 0,25 mm; p=0,000). Não foram observadas diferenças significativas em termos de altura de tecido queratinizado em nenhum dos grupos e tempos avaliados (p>0,05). Todos os grupos apresentaram redução significativa da hipersensibilidade dentinária e melhorias nas condições estéticas (p>0,05). Também não foram observadas diferenças em termos de dor e morbidade pósoperatórias (p>0,05). Dentro das limitações do presente estudo, conclui-se que as três abordagens forneceram resultados semelhantes e satisfatórios após 6 meses de acompanhamento. A adição da FG, biofuncionalizada ou não com i-PRF, proporcionou benefícios adicionais em termos de ganho de ETQ. (AU)


Soft tissue graft substitutes have been widely used to overcome the limitations of autogenous grafts in the treatment of periodontal and peri-implant soft tissue defects. However, the clinical performance of these biomaterials is still inferior. The biofunctionalization of collagen matrices using injectable platelet-rich fibrin (i-PRF) has been proposed as a strategy to enhance the bioactivity and, therefore, the clinical efficacy of these biomaterials. Thus, the aim of this study was to evaluate the effectiveness of using biofunctionalized volume-stable collagen matrix (VCMX) with i-PRF in the treatment of single gingival recessions (GRs) from clinical, esthetic, and patient-centered parameters. For this purpose, 66 patients with single RT GRs were selected and randomly allocated to one of the following groups: CAF group (n=22), coronally advanced flap (CAF); CAF+VCMX group (n=22), CAF combined with VCMX; and CAF+ VCMX +iPRF group (n=22), CAF combined with biofunctionalized VCMX with i-PRF. After 6 months, all three groups exhibited significant root coverage rates [CAF: 69.1% (2.02 ± 1.06 mm); CAF+FG: 67.44% (1.7 ± 0.81 mm); and CAF+FG+iPRF: 64.92% (1.64 ± 0.80 mm), with no difference between the groups (p=0.33). The groups that received the biomaterials showed a greater gain in keratinized tissue thickness (KTT) (CAF: 0.12 ± 0.2 mm; CAF+FG: 0.43 ± 0.24 mm; CAF+FG+i-PRF: 0.48 ± 0.25 mm; p=0.000). No significant differences were observed in terms of keratinized tissue height in any of the groups and assessed time points (p>0.05). All groups showed a significant reduction in dentin hypersensitivity and improvements in esthetic conditions (p>0.05). No differences were also observed in terms of post-operative pain and morbidity (p>0.05). Within the limitations of this study, it is concluded that all three approaches provided similar and satisfactory results after 6 months of follow-up. The addition of VCMX, whether biofunctionalized or not with i-PRF, provided additional benefits in terms of keratinized tissue thickness gain. (AU)


Subject(s)
Humans , Biocompatible Materials , Autografts , Heterografts , Platelet-Rich Fibrin , Gingival Recession
4.
Chinese Journal of Orthopaedics ; (12): 191-196, 2023.
Article in Chinese | WPRIM | ID: wpr-993428

ABSTRACT

Osteoarthritis is a common degenerative joint disease, and cartilage damage is often considered an early factor in irreversible joint degeneration. Repairing damaged cartilage remains a medical challenge due to its limited ability to self-repair and regenerate. In recent years, the application of tissue engineering strategies to treat cartilage defects has been recognized as an emerging therapeutic avenue. Acellular cartilage matrix (ACM) is an ideal material for cartilage repair and regeneration as it retains the extracellular matrix structure and bioactive components of natural cartilage, mimicking the extracellular environment of natural cartilage to the greatest extent. Type II collagen is the main type of hyaline cartilage and plays an important role in regulating the mechanical properties of cartilage tissue. It has been shown that type II collagen, growth factors and the hypoxic microenvironment play important roles in promoting cartilage regeneration. Type II collagen induces cell aggregation and chondrogenic differentiation in a specific way; Various growth factors contained in the ACM induce Sox9 expression and promote chondrogenic differentiation of stem cells; The hypoxic microenvironment upregulates the expression of type II collagen (COL2A1), Sox9 and maintains chondrocyte phenotype. In addition, ACM has been widely used in cartilage regeneration studies, either as a decellularized scaffold, hydrogel or 3D bioprinting technique for the repair of defective cartilage. Although the ACM-derived biomaterials discussed in this paper have many advantages, there are still some difficulties in their practical applications, such as loss of ACM components and reduced scaffold performance, which are still worth exploring in depth.

5.
Journal of Southern Medical University ; (12): 157-165, 2023.
Article in Chinese | WPRIM | ID: wpr-971510

ABSTRACT

OBJECTIVE@#The prepare decellularized extracellular matrix (ECM) scaffold materials derived from human cervical carcinoma tissues for 3D culture of cervical carcinoma cells.@*METHODS@#Fresh human cervical carcinoma tissues were treated with sodium lauryl ether sulfate (SLES) solution to prepare decellularized ECM scaffolds. The scaffolds were examined for ECM microstructure and residual contents of key ECM components (collagen, glycosaminoglycan, and elastin) and genetic materials by pathological staining and biochemical content analysis. In vitro 3D culture models were established by injecting cultured cervical cancer cells into the prepared ECM scaffolds. The cells in the recellularized scaffolds were compared with those in a conventional 2D culture system for cell behaviors including migration, proliferation and epithelial-mesenchymal transition (EMT) wsing HE staining, immunohistochemical staining and molecular biological technology analysis. Resistance to 5-fluorouracil (5-Fu) of the cells in the two culture systems was tested by analyzing the cell apoptosis rates via flow cytometry.@*RESULTS@#SLES treatment effectively removed cells and genetic materials from human cervical carcinoma tissues but well preserved the microenvironment structure and biological activity of ECM. Compared with the 2D culture system, the 3D culture models significantly promoted proliferation, migration, EMT and 5-Fu resistance of human cervical cancer cells.@*CONCLUSION@#The decellularized ECM scaffolds prepared using human cervical carcinoma tissues provide the basis for construction of in vitro 3D culture models for human cervical cancer cells.


Subject(s)
Female , Humans , Decellularized Extracellular Matrix , Extracellular Matrix , Uterine Cervical Neoplasms , Tissue Scaffolds/chemistry , Carcinoma , Fluorouracil/pharmacology , Tissue Engineering , Tumor Microenvironment
6.
Rev. bras. ortop ; 57(6): 992-1000, Nov.-Dec. 2022. tab, graf
Article in English | LILACS | ID: biblio-1423629

ABSTRACT

Abstract Objective Semiquantitative and automated measurement of nuclear material removal and cell infiltration in decellularized tendon scaffolds (DTSs). Method 16 pure New Zealand rabbits were used, and the gastrocnemius muscle tendon was collected bilaterally from half of these animals (16 tendons collected); 4 were kept as control and 12 were submitted to the decellularization protocol (DTS). Eight of the DTSs were used as an in vivo implant in the experimental rotator cuff tear (RCT) model, and the rest, as well as the controls, were used in the semiquantitative and automated evaluation of nuclear material removal. The eight additional rabbits were used to make the experimental model of RCT and subsequent evaluation of cellular infiltration after 2 or 8 weeks, within the DTS. Results The semiquantitative and automated analysis used demonstrated a removal of 79% of nuclear material (p< 0.001 and power > 99%) and a decrease of 88% (p < 0.001 and power >99%) in the area occupied by nuclear material after the decellularization protocol. On cell infiltration in DTS, an increase of 256% (p < 0.001 and power >99%) in the number of cells within the DTS was observed in the comparison between 2 and 8 weeks postoperatively. Conclusion The proposed semiquantitative and automated measurement method was able to objectively measure the removal of nuclear material and cell infiltration in DTS.


Resumo Objetivo Mensuração semiquantitativa e automatizada da remoção de material nuclear e da infiltração celular em scaffolds tendinosos descelularizados (STDs). Método Foram utilizados 16 coelhos Nova Zelândia puros, sendo o tendão do músculo gastrocnêmio coletado bilateralmente de metade destes animais (16 tendões coletados); 4 foram mantidos como controle e 12 foram submetidos ao protocolo de descelularização (STD). Dos STDs, 8 foram utilizados como implante in vivo no modelo experimental de lesão do manguito rotador (LMR) e os restantes, assim como os controles, foram utilizados na avaliação semiquantitativa e automatizada da remoção de material nuclear. Os oito coelhos adicionais foram utilizados na confecção do modelo experimental de LMR e posterior avaliação da infiltração celular após 2 ou 8 semanas, dentro do STD. Resultados A análise semiquantitativa e automatizada utilizada demonstrou uma remoção de 79% do material nuclear (p< 0,001 e poder > 99%) e uma diminuição de 88% (p< 0,001 e poder > 99%) na área ocupada por material nuclear após o protocolo de descelularização. Sobre a infiltração celular no STD, foi observado um aumento de 256% (p< 0,001 e poder > 99%) no número de células dentro do STD na comparação entre 2 e 8 semanas de pós-operatório. Conclusão O método de mensuração semiquantitativo e automatizado proposto foi capaz de mensurar objetivamente a remoção de material nuclear e a infiltração celular no STD.


Subject(s)
Animals , Rabbits , Tendons , Tissue Engineering , Regenerative Medicine , Extracellular Matrix , Tissue Scaffolds
7.
J. oral res. (Impresa) ; 11(5): 1-10, nov. 23, 2022. ilus, tab
Article in English | LILACS | ID: biblio-1436931

ABSTRACT

Objetive: To determine the expression of Fibroblast Growth Factor (FGF)-2 and Bone Morphogenetic Protein (BMP)-2 after application of scaffold hydroxyapatite from Rajungan crab shell (Portunus pelagicus) in the tooth extraction socket of Cavia cobaya. Material and Methods: This study used a post-test only control group design with 28 Cavia cobaya separated into two groups, control and treatment group. The left mandibular incisor was extracted, and socket preservation was conducted. A hydroxyapatite graft derived from crab shells was mixed with gelatin and eventually turned into a scaffold, which was afterward put into the extraction socket. After 7 days and 14 days, each group was terminated and examined using immunohistochemical staining to observe the expression of FGF-2 and BMP-2. One-Way Anova and Tukey HSD were used to examine the research data. Results: FGF-2 and BMP-2 expressions were observed higher in the group that received hydroxyapatite scaffold at the post-extraction socket than those in the group that did not receive hydroxyapatite scaffold. Conclusion: The application of a hydroxyapatite scaffold from Rajungan crab shell (Portunus pelagicus) to the tooth extraction socket can increase FGF-2 and BMP-2 expression.


Objetivo: Determinar la expresión del factor de crecimiento de fibroblastos (FGF)-2 y la proteína morfogenética ósea (BMP)-2 después de la aplicación de hidroxiapatita de andamio de caparazón de cangrejo Rajungan (Portunus pelagicus) en el alvéolo de extracción dental de Cavia cobaya. Material y Métodos: Este estudio utilizó un diseño de grupo de control solo posterior a la prueba con 28 Cavia cobaya separados en dos grupos, grupo de control y grupo de tratamiento. Se extrajo el incisivo mandibular izquierdo y se realizó la preservación del alvéolo. Un injerto de hidroxiapatita derivado de caparazones de cangrejo se mezcló con gelatina y se convirtió en un andamio, que luego se colocó en el alvéolo de extracción. Después de 7 días y 14 días, se terminó cada grupo y se examinó mediante tinción inmunohistoquímica para observar la expresión de FGF-2 y BMP-2. Se utilizaron One-Way Anova y Tukey HSD para examinar los datos de la investigación. Resultados: Las expresiones de FGF-2 y BMP-2 se observaron más altas en el grupo que recibió la estructura de hidroxiapatita en el alvéolo posterior a la extracción que en el grupo que no recibió la estructura de hidroxiapatita. Conclusión: La aplicación de un andamio de hidroxiapatita de caparazón de cangrejo Rajungan (Portunus pelagicus) al alvéolo de extracción dental puede aumentar la expresión de FGF-2 y BMP-2.


Subject(s)
Animals , Guinea Pigs , Fibroblast Growth Factor 2 , Bone Morphogenetic Proteins , Hydroxyapatites , Tooth Extraction , Tooth Socket , Tissue Scaffolds
8.
Chinese Journal of Orthopaedic Trauma ; (12): 617-623, 2022.
Article in Chinese | WPRIM | ID: wpr-956565

ABSTRACT

Objective:To analyze the effects of a novel type of polydopamine (PDA)-coated porous titanium alloy scaffolds loaded with zoledronic acid-gelatin nanoparticles (ZOL-GNPs) for topical sustained drug release on osteoclasts in vitro. Methods:After porous titanium alloy scaffolds were fabricated using electron beam melting technique and ZOL-GNPs with different ZOL concentrations (0, 1, 10, 50, 100, 500 μmol/L) were prepared by desolvation method, PDA-coated porous titanium alloy scaffolds loaded with ZOL-GNPs were constructed by combining the two. The characteristics of the scaffolds were analyzed. The biomechanics of 3 different scaffolds (bare porous titanium alloy scaffolds, PDA-coated porous titanium alloy scaffolds, and PDA-coated porous titanium alloy scaffolds loaded with ZOL-GNPs) were investigated. Drug release detection was carried out by high performance liquid chromatography on the 1st, 4th, 7th, 14th, 21st, and 28th days respectively. The osteoclasts were inoculated into the novel scaffolds with different ZOL concentrations. The expression of osteoclast-related genes was detected by real-time quantitative (RT)-polymerase chain reaction (PCR); the expression of osteoclast-related proteins was detected by Western-blot.Results:The PDA-coated porous titanium alloy scaffolds loaded with ZOL-GNPs were successfully constructed. Electron microscope scanning showed that the GNPs were well spheroidized, smooth in surface, and uniformly dispersed, with a particle size of (243.6±63.4) nm. The ZOL-GNPs were uniformly compounded on the surface and in the pores of the scaffolds, and the spheres were regular in shape with no adhesion. The biomechanical experiments showed that the elastic moduli of the porous titanium alloy scaffolds under 3 different conditions were (1.81±0.12) GPa, (1.80±0.23) GPa and (1.81±0.15) GPa, showing no significant difference ( P> 0.05). The drug release percentage in the porous titanium alloy scaffolds was obviously high on the first day, and increased gradually and slowly in the subsequent 27 days. In the scaffolds with a low concentration ZOL, more osteoclasts adhered and proliferated; in the 50 μmol/L scaffolds, spheroid cells appeared; the spheroid cells increased and even apoptosis occurred with an increase in the ZOL concentration. RT-PCR showed that the expression of Ctsk gene and TRAP gene increased with the increased ZOL concentration, peaked in the 50 μmol/L scaffolds, and then decreased with the increased concentration, showing statistically significant differences ( P < 0.05). Western-blot showed that the expression pattern of Ctsk and TRAP was similar to that of their related genes. Conclusions:The novel PDA-coated porous titanium alloy scaffolds loaded with ZOL-GNPs demonstrate good mechanical properties and an anti-osteoporosis effect via their topical sustained drug release. The scaffolds with a ZOL concentration of 50 μmol/L may exert the best effect on inhibition of osteoclasts.

9.
Journal of Peking University(Health Sciences) ; (6): 557-564, 2022.
Article in Chinese | WPRIM | ID: wpr-941002

ABSTRACT

OBJECTIVE@#To compare the effects of three different crosslinkers on the biocompatibility, physical and chemical properties of decellularized small intestinal submucosa (SIS) porous scaffolds.@*METHODS@#The SIS porous scaffolds were prepared by freeze-drying method and randomly divided into three groups, then crosslinked by glutaraldehyde (GA), 1-ethyl-3-(3-dimethylaminopropyl) carbodi-imide (EDC) and procyanidine (PA) respectively. To evaluate the physicochemical property of each sample in different groups, the following experiments were conducted. Macroscopic morphologies were observed and recorded. Microscopic morphologies of the scaffolds were observed using field emission scanning electron microscope (FESEM) and representative images were selected. Computer software (ImageJ) was used to calculate the pore size and porosity. The degree of crosslinking was determined by ninhydrin experiment. Collagenase degradation experiment was performed to assess the resistance of SIS scaffolds to enzyme degradation. To evaluate the mechanical properties, universal mechanical testing machine was used to determine the stress-strain curve and compression strength was calculated. Human bone marrow mesenchymal cells (hBMSCs) were cultured on the scaffolds after which cytotoxicity and cell proliferation were assessed.@*RESULTS@#All the scaffolds remained intact after different crosslinking treatments. The FESEM images showed uniformed interconnected micro structures of scaffolds in different groups. The pore size of EDC group[(161.90±13.44) μm] was significantly higher than GA group [(149.50±14.65) μm] and PA group[(140.10±12.06) μm] (P < 0.05). The porosity of PA group (79.62%±1.14%) was significantly lower than EDC group (85.11%±1.71%) and GA group (84.83%±1.89%) (P < 0.05). PA group showed the highest degree of crosslinking whereas the lowest swelling ratio. There was a significant difference in the swelling ratio of the three groups (P < 0.05). Regarding to the collagenase degradation experiment, the scaffolds in PA group showed a significantly lower weight loss rate than the other groups after 7 days degradation. The weight loss rates of GA group were significantly higher than those of the other groups on day 15, whereas the PA group had the lowest rate after 10 days and 15 days degradation. PA group showed better mechanical properties than the other two groups. More living cells could be seen in PA and EDC groups after live/dead cell staining. Additionally, the proliferation rate of hBMCSs was faster in PA and EDC groups than in GA group.@*CONCLUSION@#The scaffolds gained satisfying degree of crosslinking after three different crosslinking treatments. The samples after PA and EDC treatment had better physicochemical properties and biocompatibility compared with GA treatment. Crosslinking can be used as a promising and applicable method in the modification of SIS scaffolds.


Subject(s)
Humans , Biocompatible Materials/chemistry , Cross-Linking Reagents/chemistry , Porosity , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Weight Loss
10.
International Journal of Surgery ; (12): 273-278, 2022.
Article in Chinese | WPRIM | ID: wpr-930008

ABSTRACT

The normal ventilatory function is severely impaired by tracheal traumas, stenoses, tumors and some congenital diseases, which could result in tissue hypoxia and endangering the life of the patient. Resection and reconstruction of tracheal lesions is the most effective way to treat these diseases. At present, there is still no long-term safe and reliable method to achieve the reconstruction of long-segment trachea injury in clinical practice, and tissue-engineered trachea may be the solution to this situation. Cartilage, as one of the most important parts of tissue engineered trachea, plays a key role in providing mechanical support and maintaining the integrity of trachea. Tracheal tissue engineering cartilage regeneration process consists of several important parts, including the source of the cartilage cells, tissue engineering scaffold construction strategy and hydrogel composite scaffold material preparation, and the affecting factors of biological activity and application. This article reviews the new strategies of tissue engineered tracheal cartilage regeneration and the existing obstacles in order to provide reference for clinical practice.

11.
Rev. mex. ing. bioméd ; 42(2): 1171, May.-Aug. 2021. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1347766

ABSTRACT

ABSTRACT Dialdehyde starches (DAS) have been used as biomaterials due to their biocompatibility and biodegradability; nonetheless, sweet potato (Ipomea batatas L.) starch has not been researched. Films based on sweet potato DAS, mixed with native starch (NS), poly-vinyl alcohol (PVA) and glycerin have been developed with protein encapsulation, using central composite design (CCD) and response surface methodology (RSM). Input variables were oxidation degree, NS concentration and polymeric mixture volume, while output variables were film's thickness, equilibrium swelling and BSA (Bovine serum albumin) release. DAS was obtained through hydrogen peroxide (H2O2) oxidation, and the oxidation degree is referred to as H2O2 concentration. Films presented rough surfaces, and formulations containing 10% H2O2 DAS presented micropores. Water uptake was greater with higher DAS content. Film thickness depended on the volume of the polymeric suspension and influenced swelling capacity. According to RSM, the optimal formulation was DAS with 5% H2O2 and 35% NS. These results demonstrate that oxidized sweet potato starch has potential for protein encapsulation and delivery.


RESUMEN Almidones dialdehído (DAS) se han utilizado como biomateriales por su biocompatibilidad y biodegradabilidad; sin embargo, el almidón de camote (Ipomea batatas L.) no ha sido investigado. Se han desarrollado películas de DAS de camote, con almidón nativo (NS), alcohol polivinílico (PVA) y glicerina con encapsulación de proteínas, utilizando un diseño central compuesto (CCD) y metodología de superficie de respuesta (RSM). Las variables de entrada fueron: grado de oxidación, concentración de NS y volumen de la mezcla polimérica, mientras que las variables de salida fueron: espesor de la película, hinchamiento y liberación de BSA (Albúmina de Suero Bovino) en equilibrio. DAS se obtuvo mediante oxidación con peróxido de hidrógeno (H2O2), y el grado de oxidación se define como concentración de H2O2. Las películas presentaron superficies rugosas y las formulaciones con 10% H2O2 DAS presentaron microporos. La absorción de agua fue mayor con mayor contenido de DAS. El espesor de la película dependió del volumen de la mezcla polimérica e influyó en la capacidad de hinchamiento. Según RSM, la formulación óptima fue DAS con 5% H2O2 y 35% NS. Estos resultados demuestran que el almidón de camote oxidado tiene potencial para aplicaciones en la encapsulación y liberación de proteínas.

13.
Acta cir. bras ; 36(4): e360404, 2021. graf
Article in English | LILACS | ID: biblio-1248541

ABSTRACT

ABSTRACT Purpose To use a 3D printed poly (L-lactide) acid (PLLA) and hydroxyapatite (HA) composite as a bone substitute for reconstruction of a critical bone defect in the radius of rabbits. Methods A 1.5 cm ostectomy was performed in the radial diaphysis of 60 New Zealand white rabbits. The rabbits were divided into three groups according to surgical treatment of the bone defect (group I - control, group II - bone graft, group III - 3D PLLA). Each group was divided into four subgroups with different radiographic and histopathologic evaluation times (T1 - 15 days, T2 - 30 days, T3 - 60 days, T4 - 90 days). Results The implant group had greater clinically lameness (p = 0.02), edema (p = 0.007), pain (p = 0.04) and more complications at the surgical site (p = 0.03). Histologically, this group showed greater congestion (p = 0.04), hemorrhage (p = 0.04) and inflammation. Osteogenesis was microscopically similar between days (p = 0.54) and treatments (p = 0.17), even though radiographically, more effective bone healing occurred in the graft group (II), with more callus and bone bridge formation. Conclusions The customization of a 3D PLLA/HA scaffold was successful. However, in animals receiving the polymer-ceramic composite less bone callus and bone bridge was formed compared to the graft group.


Subject(s)
Durapatite , Bone Substitutes/therapeutic use , Osteogenesis , Polyesters , Rabbits , Bone Regeneration , Dioxanes , Tissue Scaffolds
14.
Braz. j. med. biol. res ; 54(9): e11055, 2021. tab, graf
Article in English | LILACS | ID: biblio-1278585

ABSTRACT

Because bone-associated diseases are increasing, a variety of tissue engineering approaches with bone regeneration purposes have been proposed over the last years. Bone tissue provides a number of important physiological and structural functions in the human body, being essential for hematopoietic maintenance and for providing support and protection of vital organs. Therefore, efforts to develop the ideal scaffold which is able to guide the bone regeneration processes is a relevant target for tissue engineering researchers. Several techniques have been used for scaffolding approaches, such as diverse types of biomaterials. On the other hand, metallic biomaterials are widely used as support devices in dentistry and orthopedics, constituting an important complement for the scaffolds. Hence, the aim of this review is to provide an overview of the degradable biomaterials and metal biomaterials proposed for bone regeneration in the orthopedic and dentistry fields in the last years.


Subject(s)
Humans , Orthopedics , Biocompatible Materials , Bone Regeneration , Tissue Engineering , Dentistry , Tissue Scaffolds
15.
Chinese Journal of Tissue Engineering Research ; (53): 499-503, 2021.
Article in Chinese | WPRIM | ID: wpr-847150

ABSTRACT

BACKGROUND: Regenerative endodontic therapy has the advantages of good biocompatibility, complete root development and high pulp vitality preservation rate. During vascular regeneration, scaffold is needed to maintain the survival of stem cells and vascular regeneration. OBJECTIVE: To analyze the effect of different bioactive scaffolds on regenerative pulp of young permanent teeth. METHODS: Totally 160 patients (168 teeth) with acute pulpitis at the age of 8 to 16 years, who were treated in the Second Hospital of Hebei Medical University from June 2016 to June 2018, were enrolled in this study. The patients were divided into traumatic group (n=92) and dental caries group (n=76) according to a cause of a disease. Each group was subdivided into mineral trioxide aggregate (MTA), iRoot BP Plus, autologous platelet-rich fibrin (PRF)+MTA and acellular dermal matrix (ADM)+MTA subgroups. The corresponding stents were used to treat regenerative pulp. At 1, 3, 6, 12 and 24 months, the tooth color, pulp vitality, and eruption height were recorded. Root canal length, root canal wall thickness, periapical shadow and apical foramen closure were compared using X-ray photography; and the success rate was calculated. This study was approved by the Ethics Committee of Second Hospital of Hebei Medical University. RESULTS AND CONCLUSION: (1) At the final follow-up in the traumatic group, tooth color, pulp vitality and eruption height were not significantly different among the four scaffold subgroups (P > 0.05). Root canal length, root canal wall thickness, periapical shadow and apical foramen occlusion were significantly different among the four scaffold subgroups (P 0.05). Root canal length, root canal wall thickness, periapical shadow and apical foramen occlusion were significantly different among the four scaffold subgroups (P < 0.05). Among them, the effect was best in the PRF+MTA subgroup. (3) No matter traumatic group or dental caries group, the success rate was significantly different among the four scaffold subgroups (P < 0.05); and the success rate was highest in the PRF+MTA subgroup. (4) Results verified that PRF combined with MTA has excellent biological induction in the treatment of young permanent teeth with regenerative pulp. Compared with other scaffolds, it can better preserve pulp vitality, induce the formation of young permanent teeth roots and improve the success rate of treatment.

16.
Chinese Journal of Rehabilitation Theory and Practice ; (12): 677-686, 2021.
Article in Chinese | WPRIM | ID: wpr-905227

ABSTRACT

Objective:To explore the problems of seed cells and biological scaffolds in spinal cord tissue engineering, and review the recent experimental research. Methods:Related literatures were searched in CNKI, Wangfang data, PubMed and Web of Science from establishment to March, 2021, and the problems and progress of seed cells, biological scaffolds and their combination were reviewed. Results:The problems of seed cells are carcinogenicity, immune rejection, ethics, low survival rate and differentiation rate after transplantation, and current researches focus on exploring new cell types, gene transfection, cell co-transplantation and pretreatment before transplantation. The problems of biological scaffold are that a single material selection cannot meet different needs, and the traditional technology cannot simulate the internal structure of spinal cord well. There were more researches focusing on new composite materials and new technology. The core problem of their combination is that the effects of different cell and scaffold combinations are different, and the current researches are mostly devoted to the continuous exploration of suitable composite mode, and try to introduce biological agents and other factors. Conclusion:Spinal cord tissue engineering has the potential to completely change the therapeutic pathway of spinal cord injury. Current experimental researches mainly base on solving the problems of seed cells and biological scaffolds of spinal cord tissue engineering, and further explore the appropriate composite mode of seed cells and biological scaffolds, so as to provide more basic evidence for its clinical application.

17.
International Journal of Biomedical Engineering ; (6): 479-485, 2021.
Article in Chinese | WPRIM | ID: wpr-929937

ABSTRACT

Pulp necrosis can cause increased tooth fragility and easy fracture, and hinder the sustainable development of young permanent teeth. Therefore, pulp regeneration therapy has important clinical significance. However, due to the complicated and varied anatomical structure of the pulp tissue, and various components such as nerves and blood vessels, there are many challenges in dental pulp regeneration strategy. In this paper, the recent research progress in the application of dental pulp tissue construction and transplantation by tissue engineering method was reviewed, and the selection of suitable scaffold materials and the construction of dental pulp tissue were discussed. The functional characteristics of scaffold materials were described,such as sodium alginate, chitosan, hyaluronic acid, collagen, gelatin, fibrous protein, silk fibroin, peptides and self-assembled peptides, polylactic acid, polyglycolic acid and their copolymers. In addition, the functions and characteristics of these materials were briefly introduced, as well as the functional modification with growth factors and other biological matrix extract involvement, and functional improvement of the composite scaffolds with complementary effects.Combined with the requirements of clinical operability, the composition design and functional characteristics of the injectable hydrogel scaffolds consisted of hydrophilic composite materials and/or modified with hydrophilic groups were also discussed.This review paper would be useful in providing some reference for the future research and exploration of dental pulp regeneration.

18.
Rev. Fac. Med. (Bogotá) ; 68(4): 603-607, oct.-dic. 2020. graf
Article in Spanish | LILACS, COLNAL | ID: biblio-1149562

ABSTRACT

Resumen La impresión 3D es una tecnología interesante en constante evolución. También conocida como manufactura aditiva, consiste en la conversión de diseños digitales a modelos físicos mediante la adición de capas sucesivas de material. En años recientes, y tras el vencimiento de múltiples patentes, diversos campos de las ciencias de la salud se han interesado en sus posibles usos, siendo la cirugía plástica una de las especialidades médicas que más ha aprovechado sus ventajas y aplicaciones, en especial la capacidad de crear dispositivos altamente personalizados a costos accesibles. Teniendo en cuenta lo anterior, el objetivo del presente artículo es describir los usos de la impresión 3D en cirugía plástica reconstructiva a partir de una revisión de la literatura. Las principales aplicaciones de la impresión 3D descritas en la literatura incluyen su capacidad para crear modelos anatómicos basados en estudios de imagen de pacientes, que a su vez permiten planificar procedimientos quirúrgicos, fabricar implantes y prótesis personalizadas, crear instrumental quirúrgico para usos específicos y usar biotintas en ingeniería tisular. La impresión 3D es una tecnología prometedora con el potencial de implementar cambios positivos en la práctica de la cirugía plástica reconstructiva en el corto y mediano plazo.


Abstract 3D printing is an interesting technology in constant evolution. Also known as additive manufacturing, it consists of the conversion of digital designs into physical models by successively adding material layer by layer. In recent years, and after the expiration of multiple patents, several fields of health sciences have approached this type of technology, plastic surgery being one of the medical specialties that has taken advantage of its benefits and applications, especially the ability to create highly customized devices at low costs. With this in mind, the objective of this work is to describe the uses of 3D printing in reconstructive plastic surgery based on a literature review. The main applications of 3D printing described in the literature include its ability to create anatomical models based on patient imaging studies, which in turn allow planning surgical procedures, manufacturing custom implants and prostheses, creating surgical or instrumental simulators, and using bioinks in tissue engineering. 3D printing is a promising technology with the potential to cause positive changes in the field of reconstructive plastic surgery in the short and medium term.


Subject(s)
Humans , Surgery, Plastic , Tissue Scaffolds , Tissue Engineering , Bioprinting
19.
Rev. Fac. Med. Hum ; 20(4): 706-713, Oct-Dic. 2020. graf
Article in English, Spanish | LILACS-Express | LILACS | ID: biblio-1141323

ABSTRACT

La producción de nanofibra en scaffolds utilizando la tecnología de electrospinning abarca muchos parámetros tanto físicos como químicos que han sido estudiados y que todavía no se han dilucidado completamente. Tanto la utilización de polímeros naturales, que por sus características tienen una mayor afinidad y una mayor biocompatibilidad con los procesos celulares, así mismo, una biomimetizacion similar a la estructura de la matriz celular natural del cuerpo; sin embargo, la falta de control sobre algunas sus características físicas repercuten directamente en características biológicas de la célula. Por otro lado, la utilización de polímeros sintéticos nos permite controlar características físicas, pero esto afecta el desarrollo de las células. Por ello, este artículo presenta una breve revisión de artículos científicos acerca del electrospinning y los biomateriales más utilizados para la obtención de scaffolds en el campo de la biomedicina.


Nanofiber production in scaffolds using electrospinning technology encompasses many physical and chemical parameters that have been studied and have not yet been fully elucidated. Both the use of natural polymers, which due to their characteristics have a higher affinity and a greater biocompatibility with cellular processes, as well as a biomimetization similar to the structure of the body's natural cellular matrix; however, the lack of control over some of its physical characteristics directly affects the biological characteristics of the cell. On the other hand, the use of synthetic polymers allows us to control physical characteristics, but this affects the development of cells. For this reason, this article presents a brief review of scientific articles about Electrospinning and the most used materials for obtaining scaffolds in the field of biomedicine.

20.
Arch. cardiol. Méx ; 90(1): 4-11, Jan.-Mar. 2020. tab, graf
Article in English | LILACS | ID: biblio-1130999

ABSTRACT

Abstract Background: Different mechanical properties have been suggested for metallic bioresorbable vascular scaffolds (BVS) in comparison to polymeric BVS. We aim to evaluate the acute mechanical performance of Magmaris® scaffold in comparison to Absorb®. Materials and Methods: Two groups of 10 coronary lesions treated with Magmaris® and Absorb® 1.1 (20584 vs. 21016 struts) were compared. In all cases, optical coherence tomographic (OCT) images were acquired after scaffold deployment. Baseline clinical, angiographic, and procedural characteristics were compared, including OCT evaluations. Results: No baseline clinical or angiographic significant differences were found between groups. The most common indication for revascularization was effort angina (60% vs. 70% p = 0.45) with no ST-elevation myocardial infarction (MI) cases. Main target artery was left anterior descending, with a mean vessel diameter of 3.46 ± 0.23 in Absorb® and 3.52 ± 0.19mm in Magmaris® groups (p = 0.56). All cases underwent pre- and post-dilatation with a procedural success rate of 100%. OCT analyses showed larger scaffold and vessel diameters in Magmaris® group: 3.11 ± 0.38 mm versus 3.07 ± 0.36 mm, p = 0.03 and 4.12 ± 0.51 mm versus 4.04 ± 0.46 mm, p = 0.04. Despite the application of slightly higher postdilatation pressures to Magmaris® devices (18.01 ± 2.15 vs. 17.20 ± 3.80 atm, p = 0.05), significantly lower percentages of disrupted and malapposed struts were identified within Magmaris® scaffolds (0.15% vs. 0.27%, p = 0.03 and 1.06% vs. 1.46% p = 0.01). No cardiac death, target vessel-related MI, or clinically driven target lesion revascularization was reported in a 30-day follow-up. Conclusion: Mechanical properties of Magmaris® scaffold allow achieving larger vessel and scaffold diameters in a safe manner, with lower rates of malapposition and scaffold disruption.


Resumen Introducción: Se ha sugerido la presencia de un distinto comportamiento mecánico entre los dos grupos principales de dispositivos bioresorbibles: metálicos y poliméricos. En este estudio evaluamos el comportamiento mecánico agudo del andamiaje bioresorbible metálico Magmaris® frente al del polimérico Absorb®. Métodos: Se compararon dos grupos de 10 lesiones coronarias tratadas con Magmaris® y Absorb® 1.1 (20584 vs. 21016 struts). En todos los casos se realizó estudio postimplante del dispositivo mediante tomografia de coherencia óptica (OCT). Se compararon las características basales clínicas y angiográficas, así como aspectos del procedimiento (incluídos los estudios de OCT) entre ambos grupos. Resultados: No se encontraron diferencias clínicas o angiográficas estadísticamente significativas entre ambos grupos. La indicación más frecuente de revascularización coronaria fué la presencia de angina de esfuerzo (60% vs. 70% p = 0.45), sin incluirse casos de IAMCEST. La arteria descendente anterior fué el principal vaso diana, con un diámetro medio de 3.46 ± 0.23 mm en el grupo de Absorb® y de 3.52 ± 0.19mm en el grupo de Magmaris® (p = 0.56). En todos los casos se realizó pre y postdilatación, con una tasa de éxito del procedimiento del 100%. Los estudios mediante OCT demostraron un mayor diámetro de stent y del vaso en el grupo de Magmaris®: 3.11 ± 0.38mm versus 3.07 ± 0.36 mm, p = 0.03 y 4.12 ± 0.51mm versus 4.04 ± 0.46mm, p = 0.04. A pesar de someter a los dispositivos Magmaris® a presiones de postdilatación ligeramente superiores (18.01 ± 2.15 vs. 17.20 ± 3.80 atm, p = 0.05), se identificó un menor porcentaje estadísticamente significativo de struts rotos o malapuestos en dicho grupo (0.15% vs. 0.27 %, p = 0.03 y 1.06 % vs. 1.46% p = 0.01). En un seguimiento a 30 días no se registraron eventos mayores: muerte cardíaca, IM relacionado con vaso diana o TLR. Conclusión: Las propiedades mecánicas del scaffold metálico bioresorbible Magmaris® permiten alcanzar mayores diámetros de stent y vaso de forma segura tras su implante, con una baja tasa de malaposición y disrupción.


Subject(s)
Humans , Male , Female , Middle Aged , Aged , Coronary Artery Disease/surgery , Absorbable Implants , Tissue Scaffolds , Drug-Eluting Stents , Polyesters/chemistry , Prosthesis Design , Coronary Artery Disease/diagnostic imaging , Retrospective Studies , Treatment Outcome , Coronary Angiography , Tomography, Optical Coherence , Magnesium/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL